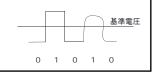

情報基礎

情報の符号化 2進数・16進数

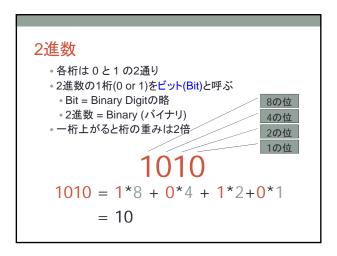
> Modified by Harumi Murakami Originally written by Kota Abe

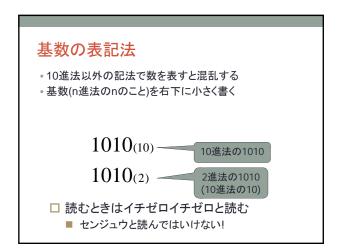
アナログとデジタル

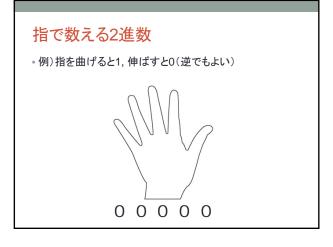
- 人が知覚できる自然界の情報はすべてアナログ
- アナログ (analog): 情報をなんらかの物理量(電圧等)で表現
 - 連続量(どこまでも細かくできる)
- デジタル (digital): 情報を離散値で表現
- ・離散量(とびとびの値)


アナログとデジタル

- 自然界の量をデジタル(数値)で厳密に表現しようとすれば、無限の桁数が必要
- ⇒「少数点以下3桁で四捨五入」あるいは「切り捨て」といったような丸めが行われる
- コンピュータでは全ての情報をデジタル化して扱う
 - ・内部では2進数を用いる


2進数•16進数


2進数


- 各桁が 0 or 1
- 0と1を電圧の高低で表せる
- 0V = 0, 5V = 1 など
- 電気回路で扱いやすい
- ノイズに強い

10進数(復習) • 各桁は 0~9 までの10通り • 一桁上がると、桁の重みは10倍 1000の位 100の位 10の位 1の位 2094 = 2*1000 + 0*100 + 9*10 + 4*1

演習
・以下の2進数を10進数に変換せよ・1000₍₂₎ =
• 11001 ₍₂₎ =

2進数の加算

1101

+) 101

10進2進変換

- •11(10)を2進数に変換してみよう
 - 2) 11
 - 2<u>)</u> 5... 1
 - 2<u>) 2</u>... 1

1... 0

10進2進変換

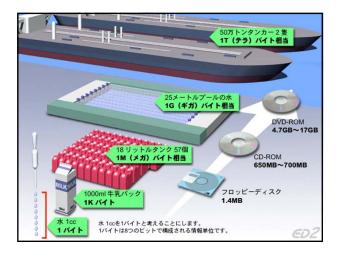
- •11 = 8 + 2 + 1 と分解してもよい
 - •2の累乗の和で表す
 - $8 + 2 + 1 = 2^3 + 2^1 + 2^0 = 1011_{(2)}$
 - ●8の位と2の位と1の位に「1」

演習

- ・以下の10進数を2進数に変換せよ
- 30₍₁₀₎ =
- •63₍₁₀₎ =

nビットで表せる数

- 10進数n桁の組み合わせは10ⁿ通り
 - ・2桁だと00~99の100通り
- 2進数n桁(nビット)の組み合わせは2n通り
- 2桁だと 00, 01, 10, 11 の4通り
- nビットで 0 ~ 2ⁿ-1 まで表せる


10進数の数え方	2進数の数え方	8ビットの2進数	ランプの点灯で示すと
0	0	00000000	0000000
1	1	00000001	0000000
2	10	00000010	0000000
3	11	00000011	0000000
4	100	00000100	0000000
5	101	00000101	0000000
6	110	00000110	0000000
7	111	00000111	0000000
8	1000	00001000	0000000
9	1001	00001001	0000000
10	1010	00001010	000000
11	1011	00001011	000000
12	1100	00001100	0000000
•			
99	01100011	00001111	0000
100	01100100	00010000	000 0000
101	01100101	00010001	0000000
254	11111110	11111110	••••••
255	11111111	11111111	0000000
256	100000000	A	
257	100000001	8ビットの2進数では11111111	
		(255)までしか数えられません。	

ビットとバイト

- 1ビットという単位では細かすぎて使いにくい
- 8ビットをまとめて1バイト (Byte) として使う
 - 1バイト = 8ビット
- 1バイトで 256通り表せる
 - アルファベット(26×2=52文字)+数字(10文字)+ 各種記号を表すのに十分なサイズ
- 1bit = 1b, 1byte = 1B と書くこともある
- 1B = 8b
- ・コンピュータではデータをバイト単位で扱う場合が多い

ビット, バイト, キロバイト...

- ビット (bit; b)
- バイト (byte; B) (=8ビット)
- キロバイト (KB) (=1024バイト)
- メガバイト (MB) (=1024キロバイト)
- ギガバイト (GB) (=1024メガバイト)
- テラバイト (TB) (=1024ギガバイト)

16進数(1)

- 2進数では桁数が多すぎて表記上不便
 - \circ 50000₍₁₀₎ = 1100001101010000₍₂₎
 - 16進数で表記するのが一般的
- 2進数を4桁ごとに区切り、それぞれを16進数1桁で表す
 - 1100|0011|0101|0000 \Rightarrow C350₍₁₆₎
 - 16進数 = Hexadecimal
- 4ビットで 0~15 までの値を表現できる
- 10~15 も1桁で表さないといけない
- A~F を使う
- ・表記法はいろいろ
- 12AB₍₁₆₎ 0x12AB など

16進数(2)

10 進	2進	16 進
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

10 進	2進	16 進
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

まとめ

- •アナログとデジタル
- コンピュータでは全ての情報をデジタル化して 扱う
 - 内部では2進数
- 2進数と10進数と16進数